Stable Micro Systems logo
Request a quote
  • Texture analysis
    • Texture Analysers
    • TA.XTplusC
    • TA.XTplus100C
    • TA.HDplusC
    • TA.XTExpressC
    • Compare Texture Analysers
    • Texture Analyser buying guide: 7 questions you need to ask
    • Software
    • Upgrades
    • Learn
    • Why measure texture?
    • How a Texture Analyser works
    • A beginner’s guide
    • What is food texture?
    • Texture Profile Analysis (TPA)
    • Texture analysis properties
    • Application areas
    • Speed up your testing
    • Case Studies
    • Attachments and accessories
    • Probes
    • Attachments
    • Acoustic Envelope Detector
    • Video Capture and Synchronisation System
    • Automated Linear Indexing System
    • Temperature Control
    • Dough Inflation System
    • Dynamic Integrated Balance
    • Penetrometer
    • IDDSI System
    • Egg Quality Testing System
    • Accessories
    • Custom design service
    • Test types
    • Penetration
    • Compression
    • Cutting/shearing
    • Extrusion
    • Fracture/bend
    • Tensile
    • Adhesion
    • Other test types
    • Applications
    • Food
      • Alternative proteins
      • Bakery
      • Cereals
      • Confectionery
      • Dairy
      • Gels and films
      • Fish
      • Fruit and vegetables
      • Meat
      • Pasta and noodles
      • Snacks
      • Petfood and animal feed
      • Powder and granules
    • Future and novel foods
      • 3D printed foods
      • Cell cultured foods
      • Foods containing CBD
      • Foods containing insects
      • Upcycled food
      • Vertically farmed foods
    • Reformulated foods
      • Free-from foods
      • Fortified foods
      • Low-in foods
      • Foods for dysphagia (IDDSI)
    • Materials and products
      • Adhesives
      • Electronics
      • Food packaging
      • Gels and films
      • Innovative materials
      • Leather and textiles
      • Paper and cardboard
      • Polymers
      • Powder and granules
    • Pharmaceutical and medical
      • Dental
      • Medical devices
      • Pharmaceutical and medical
      • Pharmaceutical packaging
    • Cosmetics and personal care
      • Cosmetics and skincare
      • Personal care products
      • Hair and hair products
    • Powders and granules
    • View all
  • Materials testing
    • Materials Testers
    • TA.HDplusC
    • TA.XTplus100C
    • Compare Materials Testers
    • Upgrades
    • Learn
    • What is materials testing?
    • Force testing
    • Materials testing properties
    • Application areas
    • Software
    • Case Studies
    • Attachments and accessories
    • Probes
    • Attachments
    • Acoustic Envelope Detector
    • Video Capture and Synchronisation System
    • Automated Linear Indexing System
    • Temperature Control
    • Dynamic Integrated Balance
    • Penetrometer
    • Resistance Conversion Unit
    • Accessories
    • Custom design service
    • Test types
    • Penetration
    • Compression
    • Cutting/shearing
    • Extrusion
    • Fracture/bend
    • Tensile
    • Adhesion
    • Other test types
    • Applications
    • Materials and products
      • Adhesives
      • Electronics
      • Food packaging
      • Gels and films
      • Innovative materials
      • Leather and textiles
      • Paper and cardboard
      • Polymers
      • Powder and granules
    • Pharmaceutical and medical
      • Dental
      • Medical devices
      • Pharmaceutical and medical
      • Pharmaceutical packaging
    • Cosmetics and personal care
      • Cosmetics and skincare
      • Personal care products
      • Hair and hair products
    • View all
  • Volume and density
    • Volscan Profiler
    • Volscan Profiler instrument
    • How the Volscan Profiler works
    • Measuring volume and density
    • Software
    • Technical specification
    • Accessories
    • Case Studies
    • Applications
    • Bakery
    • Eggs
    • Other foods
    • Materials
    • Hair
    • Ceramscan
    • Ceramscan instrument
    • How the Ceramscan works
    • Measuring ceramic density
    • Ceramic and advanced material tests
    • Software
    • Technical specification
    • Ceramscan Validation
  • Powder flow
    • Products
    • Powder Flow Analyser
    • TA.XTplusC Texture Analyser
    • Learn
    • How a PFA Works
    • Why measure powder flow?
    • Other powder related tests
    • Software
    • Technical specification
    • Industry examples
    • Case studies
  • Applications
    • Food
    • Alternative proteins
    • Bakery
    • Cereals
    • Confectionery
    • Dairy
    • Gels and films
    • Fish
    • Fruit and vegetables
    • Meat
    • Pasta and noodles
    • Snacks
    • Petfood and animal feed
    • Powder and granules
    • Future and novel foods
    • 3D printed foods
    • Cell cultured foods
    • Foods containing CBD
    • Foods containing insects
    • Upcycled food
    • Vertically farmed foods
    • Reformulated foods
    • Free-from foods
    • Fortified foods
    • Low-in foods
    • Foods for dysphagia (IDDSI)
    • Materials and products
    • Adhesives
    • Electronics
    • Packaging
    • Gels and films
    • Innovative materials
    • Leather and textiles
    • Paper and cardboard
    • Polymers
    • Powder and granules
    • Pharmaceutical and medical
    • Dental
    • Medical devices
    • Pharmaceutical and medical
    • Pharmaceutical packaging
    • Cosmetics and personal care
    • Cosmetics and skincare
    • Personal care products
    • Hair and hair products
  • Discover
    • Resources
    • Blog
    • Request a brochure
    • Request an article
    • Published references
    • Recommended literature
    • YouTube channel
    • Subscribe to our newsletter
    • Case studies
    • Food
    • Materials
    • Pharmaceutical and medical
    • Cosmetics, skincare and haircare
    • Volume and density
    • Powder flow
    • About us
    • Company profile
    • Why we are world leaders
    • Careers
    • News
  • Support
    • General
    • Software updates
    • Register a product
    • FAQs
    • Correct use of TPA
    • Glossary
    • User support
    • Technical support form
    • Test advice service
    • Macro writing service
    • Get a new manual
    • Education Zone
    • Tips for Exponent Connect users
    • Training courses
    • Contact your local distributor
    • Product maintenance
    • Calibration
    • Upgrade your instrument
    • UK maintenance plan
    • Latest news
    • Products
    • Research
    • Patents
    • Texture
    • Subscribe to our newsletter
  • Contact
    • Contact details
    • Find a distributor
    • Request a demonstration
    • Request a quote
    • Events and seminars
Request a quote

Measure the mechanical properties of innovative materials

Discover an array of techniques that a Texture Analyser can be applied to measure the mechanical properties of innovative materials.

Why measure the mechanical properties of innovative materials? How a Texture Analyser can be applied to innovative material mechanical property measurement Typical measurements Typical graphs indicating relevant mechanical property parameters Typical product test and graph Case studies Probes and attachments for measuring the mechanical properties of innovative materials Test methods Using the Texture Analyser for new innovative material and product ideas
Researcher examining 3D printed object

Why measure the mechanical properties of innovative materials?

Measuring the mechanical properties of innovative materials is vital for understanding their potential applications and limitations. As industries and technologies such as 3D printing evolve, there's an increasing demand for materials that can meet specific, often rigorous, criteria. Mechanical properties are key to determining whether a material withstands the forces that are required to be applied to it without a compromise to its expected deformation. Understanding structural integrity properties such as tensile strength, elasticity, and hardness can guide researchers and manufacturers in determining where these materials can be best used, ensuring durability and functionality. 

Additionally, such measurements can pinpoint any vulnerabilities early in the development process, allowing for timely modifications. This ensures that these materials are both cost-effective to produce and safe in their intended applications. Furthermore, having a comprehensive understanding of a material's mechanical properties aids in regulatory compliance and can provide a competitive edge in markets where material innovation is a key differentiator. In essence, assessing these properties offers a roadmap for the optimal utilisation of new materials, ensuring they meet the multifaceted demands of modern industries.

Suppleness, disintegration, scoopability, cling force, springiness… To quantify these novel mechanical properties, fresh, creative, original, and fantastic materials require new testing methodologies. These physical characteristics might be advantageous or disadvantageous. You can only control them if you can measure them.

Due to the empirical or imitative way that the Texture Analyser range can be applied, it is called upon time and time again for use in innovative areas of industry such as the creation and development of new materials.

Unbound by fundamental or standard methods and analysis options, the Texture Analyser provides the flexibility of method development unavailable in other materials testing instruments. For this reason, it is found in countless recent patents applications where testing solutions for the measurement of properties of new materials are required for mechanical testing problems which cannot be assessed by applying rigid, old-fashioned standard method approaches.

Person wearing gloves holding a reflective material
Flexible screen on smart devices
Graphene
Person wearing gloves holding a reflective material
Flexible screen on smart devices
Graphene

How a Texture Analyser can be applied to innovative material mechanical property measurement

The manufacture and development of materials requires a deep understanding of their intrinsic properties to ensure suitability for specific applications, to innovate, and to maintain consistent quality. Utilising a Texture Analyser for the measurement of mechanical properties in this domain provides a wide range of benefits:

  • Quality control and assurance: Regularly assessing mechanical properties like tensile strength, compressibility, and adhesion ensures that produced materials meet desired specifications, leading to consistent product quality across batches.
  • Innovative material development: When developing new materials or improving existing ones, the Texture Analyser provides empirical or fundamental data that helps researchers understand how changes in formulation or processing affect mechanical properties.
  • Predictive modelling: By understanding mechanical behaviour, manufacturers can predict how materials will perform under specific conditions, enhancing reliability when incorporated into final products.
  • Optimised processing parameters: The Texture Analyser can help ascertain how different manufacturing processes (e.g., extrusion, moulding) influence material properties, allowing for process optimisation.
  • Validation of material claims: For materials that are marketed with specific claims like "highly flexible" or "ultra-durable", a Texture Analyser can provide the quantitative data needed to substantiate these claims, bolstering credibility.
  • Material comparisons: When considering multiple materials for a particular application, comparative testing using a Texture Analyser can assist in selecting the most appropriate material based on objective mechanical property data.
  • Failure analysis: Should a material fail in its intended application, analysing its mechanical properties can provide insights into the causes of failure, facilitating improved designs or processing methods.
  • Cost-efficiency: By determining the exact mechanical properties needed for an application, manufacturers can avoid over-engineering or using excess material, leading to cost savings.
  • Regulatory and standards compliance: Many industries have set standards for material properties to ensure safety and performance. Using a Texture Analyser ensures materials are compliant with these standards, aiding in certifications and regulatory approvals.
  • Sustainability and eco-friendliness: As there's a growing emphasis on sustainable and environmentally-friendly materials, assessing and optimising the mechanical properties of biodegradable or recyclable materials ensures they can functionally replace traditional materials without compromising performance.
  • Customisation for client needs: Different clients might have specific requirements for mechanical properties based on their end-use applications. Using a Texture Analyser, manufacturers can tailor-make materials that fit these unique specifications.
  • Life-cycle analysis: Understanding how the mechanical properties of materials change over time and under various conditions can help in predicting their lifespan, degradation rate, and end-of-life behaviour.

In essence, the use of a Texture Analyser in the manufacture and development of materials allows companies to maintain quality, innovate effectively, meet regulatory requirements, and make informed decisions that can lead to cost savings, improved performance, and sustainability. This instrumental insight supports the entire material lifecycle, from initial development to end-of-life considerations.

Typical measurements

A Texture Analyser, though originally designed to measure textural properties, can be adapted to measure several mechanical properties of materials. Depending on the probes and fixtures equipped, a Texture Analyser can assess:

Tensile strength and elasticity

The resistance of a material to a force trying to pull it apart. It measures the maximum force a material can withstand while being stretched before breaking.

Compressive strength

The resistance of a material to breaking under compression. It measures how much a material can be compressed before it either fractures or deforms permanently.

Peel strength

Determines the force needed to separate two bonded surfaces, commonly used in applications involving adhesives or laminates.

Frictional properties

Evaluating the coefficient of friction of materials to understand their slip or grip tendencies.

Viscoelastic properties

For soft materials or gels, understanding their combined viscous and elastic responses under stress.

Break and fracture resistance

Measuring the force or energy required to break or fracture a material.

Gel strength and consistency

Understanding the structural integrity and consistency of gel-like materials.

Adhesion and cohesion strength

Evaluating the internal strength of materials (cohesion) and their ability to stick to different surfaces (adhesion).

Shear strength

Measures the material's resistance to forces that can cause the internal structure to slide against itself.

Hardness

Depending on the material, an instrument can measure how resistant a surface is to penetration or permanent indentation.

Creep and relaxation

Observing how a material deforms under constant stress over time (creep) or how stress decreases over time under constant strain (relaxation).

Flexural/bending strength

The strength of a material when bent. It evaluates a material's resistance to deformation under bending load.

Puncture and penetration resistance

Assessing how much force it takes to puncture or penetrate the material.

Elasticity and Young's modulus

The ability of a material to return to its original shape after being stretched or compressed. Young's Modulus relates stress to strain, providing a measure of stiffness.

Swelling and absorption

For hydrogels or absorbent materials, evaluating their capacity to absorb liquids and swell.

Tear resistance

Evaluating the force necessary to start or continue a tear in a material.

Burst strength

Measuring the force at which a material will rupture.

Regardless of whether the test is performed in compression or tension, a resulting curve can be analysed to obtain the following typical parameters:

  • Strain rate 
  • Young’s modulus 
  • Tangent, chord and secant modulus
  • Breaking strain
  • x% proof stress 
  • Maximum stress
  • Hysteresis % Resilience 
  • Yield stress 
  • Strain to yield
  • Energy to maximum stress
  • Energy to failure
  • Strain at maximum stress

When specifically measuring in tension: Flexure using three point bend for cuboid and cylindrical samples:

  • Necking onset
  • Ultimate tensile strength
  • Strain hardening parameter 
  • Strength coefficient Yield stress 
  • Young’s modulus 
  • Flexural strength 
  • Toughness

Indentation using conical and spherical probes: Puncture of uniform thickness thin films using spherical probes:

  • Indentation modulus 
  • Hardness 
  • Elastic energy 
  • Plastic energy 
  • Indentation energy Stiffness 
  • Strength 
  • Toughness 
  • Failure strain

The use of a Texture Analyser provides valuable insights into the mechanical properties of new materials, enabling researchers to optimise their formulations or production processes. By understanding these properties, researchers can refine materials to meet specific application requirements, ensuring functionality, durability, and reliability.

Typical graphs indicating relevant mechanical property parameters

Graph showing measurement of material friction and stiction using the Coefficient of Friction Rig
Measurement of material friction and stiction using the Coefficient of Friction Rig
Graph showing the measurement of tensile properties of tin sheet using Tensile Grips
Measurement of tensile properties of tin sheet using Tensile Grips

Typical product test and graph

Case studies

Whether its providing the solution for Kuraray Co to measure the compressive strength of their agricultural water retention material, allowing Patent Well to characterise the tack of polymer sealants for use on aircraft parts or offering a method for to measure the mechanical properties of edible utensils, a materials testing instrument is adaptable and flexible in its application to measure the bespoke mechanical properties of your product and then enable its quality to be controlled in your manufacturing to guarantee consistency and customer satisfaction.

New products that take new forms and have innovative properties require new testing solutions to ensure that the purpose for which they are designed is met and their structural or mechanical requirements match their intended location of use. A Texture Analyser is frequently relied upon for use in innovative fields of industry, such as the invention and development of novel materials, due to the empirical or imitative way in which it can be utilised. The Texture Analyser offers method creation flexibility not seen in other materials testing devices because it is not constrained by fundamental or standard methodologies and analysis possibilities. As a result of its universal application in all industries, it appears in a wave of recent patent applications where testing solutions for the measurement of properties of novel materials taking unusual sample forms are needed for mechanical testing challenges that can't be solved using rigid, old-school standard technique approaches.

The Texture Analyser is already being employed in peculiar ways that may surprise your usual expectations of using the instrument. Nothing is more exciting that the potential to create:

  • Shape morphing aircraft skins (using the Resistance Conversion Unit attached to a TA)
  • Self-healing materials for space missions,
  • Deployable structure using bistable complaint mechanisms
  • Skin inspired strain sensors for human motion monitoring
  • Stealthy car clothing with a self-repairing function, or,
  • Tactile electronic skin.
  • Or, how about an unmanned vehicle whose flexible body is designed to mimic tilt sensing inspired from the way jellyfish move or,
  • The creation of aqueous fragrance release gel formulations with considerable strength, elasticity and mouldability.

These novel developments need testing so that their properties can be quantified for comparison with any future redesign, modification or as a quality control benchmark when going into production.

With deep expertise in materials testing, we’re well equipped to support innovation in the innovative materials sector – just ask our customers.

Probes and attachments for measuring the mechanical properties of innovative materials

A wide range of probes and attachments can be integrated with our instruments, enabling precise testing tailored to the specific material or product under evaluation. Applications include tensile tests to assess material strength, bending tests to evaluate flexibility, and the use of a Volscan Profiler to capture detailed dimensional profiles of 3D-printed components.

Over the years, we have collaborated with leading scientists and organisations across multiple industries to design and refine attachments that address highly specific testing requirements. When a suitable solution does not already exist, we develop one – expanding our portfolio of Community Registered Designs and reinforcing our commitment to innovation in solving complex testing challenges.

The examples provided highlight a selection of specialised attachments and commonly performed measurements in this application area. This list is not exhaustive; a broad range of additional options are available for the testing of innovative materials. All instruments in the Texture Analyser range can be used to perform the tests described.

Three Point Bend Rig

A/3PB

Provides a flexural stiffness test.

Articulated Tensile Grips

A/ATG

Allows the gripping of thin materials while also providing rotational flexibility.

Adhesive Indexing System

A/90PR

Allows 90 degree peel testing via a sliding platform.

Self-tightening Roller Grips

A/TGT

Can be used to measure tensile strength of packaging where slippage at the grip face may be a problem.

Tensile Grips

A/TG

Used for the assessment of seal strength/tensile properties.

Heavy Duty Tensile Grips 5kN

A/HDT

For assessment of tensile properties requiring higher forces.

Pneumatic Grips

A/TGP, A/TGPHD

An alternative means of holding a sample for tensile testing as the gripping pressure can be controlled precisely.

Horizontal Friction System

A/HFS

Used to assess packaging friction properties in a single direction or cyclic motion.

Mini Stickiness System

HDP/MSS

Provides means of measuring viscous polymer stickiness.

Domical/Hemispherical Probes

P/0.5HS

Allow measurement of keyboard/button actuation force.

Indentation test using Shore / Vickers Hardness Probes

Example standard: ISO 7619-1

Automated Linear Indexing System

Enables multiple compression/adhesive measurements and is easily indexable and centrally oriented to the next test zone for sample placement.

Acoustic Emission and Video Capture / Synchronisation

Collect acoustic data during a test and synchronise force data with video frames – of particular interest for the testing of brittle products.

Penetrometer

Measure the resistance of a substance to penetration.

Box creep test

Example standard: ASTM D7030.

Perforation tensile test

Example standard: ASTM D4987.

Flat crush test

Example standard: TAPPI T809.

Edge crush test

Example standard: TAPPI T811.

Ring crush test

Example standard: TAPPI T822.

Pin adhesion test

Example standard: TAPPI T821.

Tear 'trouser' test

Example standard: TAPPI T470.

Puncture test

Test methods

A wide range of test methods for innovative materials is built into Exponent Connect software and will automatically load at the click of a button. We help make your texture testing methods quicker to access and the files for analysis of your product properties are ready to go.

Using the Texture Analyser for new innovative material and product ideas

Innovative material research is an expansive and dynamic field. Here are some of the newer ingredient and product ideas in materials research, development, and production and a typical academic reference to show how the Texture Analyser has already being applied:

Graphene

A single layer of carbon atoms arranged in a two-dimensional honeycomb lattice, graphene is known for its remarkable strength, electrical conductivity, and flexibility.

View published examples using the Texture Analyser

Shape memory alloys

Metals that "remember" their original shape and can return to it after deformation when exposed to a specific stimulus, often heat.

View published examples using the Texture Analyser

Bio-based plastics

Plastics derived from renewable biomass sources, like vegetable fats and oils or corn starch.

View published examples using the Texture Analyser

Metal-organic frameworks (MOFs)

Compounds consisting of metal ions or clusters coordinated to organic ligands, known for their extremely high surface areas.

View published examples using the Texture Analyser

Carbon nanotubes

Cylindrical molecules made of carbon atom sheets, known for their strength and electrical properties.

View published examples using the Texture Analyser

2D materials

Beyond graphene, materials like molybdenum disulfide, phosphorene, and boron nitride are being researched for their unique properties.

View published examples using the Texture Analyser

Nano-cellulose

Derived from plant matter and offers unique properties like high mechanical strength and biodegradability.

View published examples using the Texture Analyser

High Entropy Alloys (HEAs)

Alloys constructed with multiple principal elements, potentially offering unique combinations of properties.

Self-healing materials

Materials that can autonomously repair damage without external intervention, inspired by biological systems.

View published examples using the Texture Analyser

Aerogels

Ultra-light materials with extremely low densities, often dubbed "frozen smoke", known for their insulation properties.

View published examples using the Texture Analyser

Liquid crystal elastomers

Materials that combine properties of liquid crystals and elastomers, exhibiting unique shape-changing properties.

View published examples using the Texture Analyser

Biodegradable metals

Metals that dissolve or are absorbed in certain environments, often explored for medical implant applications.

View published examples using the Texture Analyser

Stimuli-responsive polymers

Polymers that undergo physical or chemical changes in response to external stimuli, like temperature, pH, or light.

View published examples using the Texture Analyser

Metamaterials

Man-made materials engineered to have properties not found in naturally occurring materials. These are often used to manipulate electromagnetic waves.

View published examples using the Texture Analyser

Bio-based and synthetic spider silk

Strong, lightweight, and biodegradable, with potential applications ranging from textiles to medical sutures.

View published examples using the Texture Analyser

The field of innovative materials research is vast, and the above list provides just a snapshot of the ongoing developments. As science and technology progress, we can expect an even broader range of advanced materials with novel properties and applications.

Contents

  • Why measure the mechanical properties of innovative materials?
  • How a Texture Analyser can be applied to innovative material mechanical property measurement
  • Typical measurements
  • Typical graphs indicating relevant mechanical property parameters
  • Typical product test and graph
  • Case studies
  • Probes and attachments for measuring the mechanical properties of innovative materials
  • Test methods
  • Using the Texture Analyser for new innovative material and product ideas

MORE INFORMATION

Request a brochure

Request a brochure

Request an article

Request an article

Read our blog

Read our blog

Learn more about innovative materials

Request a demonstration
View published references
See patents citing the Texture Analyser
Home
  • Contact
  • Send us an enquiry
  • Request a quote
  • Request a demonstration
  • Find a distributor
Head office

+44 (0) 1483 427345
Vienna Court, Lammas Road
Godalming, Surrey, GU7 1YL
United Kingdom

Subscribe to our newsletter
  • LinkedIn
  • YouTube
  • X (formerly Twitter)
  • Facebook
Copyright © 2025 Stable Micro Systems. All rights reserved. Privacy and cookie policy Sitemap